Soft Computing Models for Network Intrusion Detection Systems
نویسندگان
چکیده
Security of computers and the networks that connect them is increasingly becoming of great significance. Computer security is defined as the protection of computing systems against threats to confidentiality, integrity, and availability. There are two types of intruders: external intruders, who are unauthorized users of the machines they attack, and internal intruders, who have permission to access the system with some restrictions. This chapter presents a soft computing approach to detect intrusions in a network. Among the several soft computing paradigms, we investigated fuzzy rule-based classifiers, decision trees, support vector machines, linear genetic programming and an ensemble method to model fast and efficient intrusion detection systems. Empirical results clearly show that soft computing approach could play a major role for intrusion detection.
منابع مشابه
Assessment Methodology for Anomaly-Based Intrusion Detection in Cloud Computing
Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud...
متن کاملIncorporating soft computing techniques into a probabilistic intrusion detection system
There are a lot of industrial applications that can be solved competitively by hard computing, while still requiring the tolerance for imprecision and uncertainty that can be exploited by soft computing. This paper presents a novel intrusion detection system (IDS) that models normal behaviors with hidden Markov models (HMM) and attempts to detect intrusions by noting significant deviations from...
متن کاملIntrusion Detection Systems Using Adaptive Regression Splines
Past few years have witnessed a growing recognition of soft computing technologies for the construction of intelligent and reliable intrusion detection systems. Due to increasing incidents of cyber attacks, building effective intrusion detection systems (IDSs) are essential for protecting information systems security, and yet it remains an elusive goal and a great challenge. In this paper, we r...
متن کاملMoving dispersion method for statistical anomaly detection in intrusion detection systems
A unified method for statistical anomaly detection in intrusion detection systems is theoretically introduced. It is based on estimating a dispersion measure of numerical or symbolic data on successive moving windows in time and finding the times when a relative change of the dispersion measure is significant. Appropriate dispersion measures, relative differences, moving windows, as well as tec...
متن کاملIntrusion Detection Using Ensemble of Soft Computing Paradigms
Soft computing techniques are increasingly being used for problem solving. This paper addresses using ensemble approach of different soft computing techniques for intrusion detection. Due to increasing incidents of cyber attacks, building effective intrusion detection systems (IDSs) are essential for protecting information systems security, and yet it remains an elusive goal and a great challen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005